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Abstract

Background: Yoga is increasingly popular worldwide with several physical and mental benefits, but the underlying
neurobiology remains unclear. Whereas many studies have focused on pure meditational aspects, the triad of yoga
includes meditation, postures, and breathing. We conducted a cross-sectional study comparing experienced yoga
practitioners to yoga-naive healthy subjects using a multiparametric 2 x 2 design with simultaneous positron
emission tomography/magnetic resonance (PET/MR) imaging.

Methods: '®F-FDG PET, morphometric and diffusion tensor imaging, resting state fMRI, and MR spectroscopy were
acquired in 10 experienced (4.8 + 2.3 years of regular yoga experience) yoga practitioners and 15 matched controls
in rest and after a single practice (yoga practice and physical exercise, respectively).

Results: In rest, decreased regional glucose metabolism in the medial temporal cortex, striatum, and brainstem was
observed in yoga practitioners compared to controls (p < 0.0001), with a significant inverse correlation of resting
parahippocampal and brainstem metabolism with years of regular yoga practice (o < — 0.63, p < 0.05). A single
yoga practice resulted in significant hypermetabolism in the cerebellum (p < 0.0001). None of the MR measures
differed, both at rest and after intervention.

Conclusions: Experienced yoga practitioners show regional long-term decreases in glucose metabolism related to years
of practice. To elucidate a potential causality, a prospective longitudinal study in yoga-naive individuals is warranted.
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Background pathological conditions such as mood and anxiety disor-

Yoga combines the triad of meditation (dhyana), physical
postures (asana), and focused breathing (pranayama).
Originating in ancient India, the current 12-month preva-
lence of yoga practice is rising to about 9% in Western
countries [1]. Apart from promotion of general health and
well-being, yoga is advocated to ameliorate a variety of
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ders [2], where limited-to-moderate effects were found in
symptom severity of depression and anxiety, comparable
to medication and physical exercise interventions [3].
Nevertheless, based on a meta-analysis, no significant
effects of yoga on symptoms of depression compared to
treatment as usual were found [4].

In order to better assess potential benefits of yoga and
predict to which patients it may be suited, a better un-
derstanding of the neurobiology of yoga is strongly
needed. Only a limited number of neuroimaging studies
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have probed the effect of the yoga triad on the struc-
tural, functional, or molecular level using magnetic res-
onance imaging (MRI), positron emission tomography
(PET), or single-photon emission tomography (SPECT).
So far, most neuroimaging studies on yoga have focused
on the meditational aspects rather than on the full triad.
Overall, many studies suffer from variably defined con-
trol groups and a variety in yoga styles. The most con-
sistently observed structural findings include increased
gray matter density/volume in the hippocampus and in-
sular cortex in experienced yoga practitioners compared
to controls [5, 6], which may reflect changes in neuro-
genesis/synaptogenesis and changes in neuronal morph-
ology [7]. Also, in experienced yoga meditation
practitioners, increased functional connectivity was dem-
onstrated, as measured with resting state functional MRI
(rsfMRI), between the insula and frontal cortex [8] to-
gether with activity changes in the prefrontal cortex [9].
Based on DTI (diffusion tensor imaging), increased insu-
lar white matter integrity [10] was found. These changes
have been linked to alterations in emotional/memory
processing, strengthening of interoceptive and executive/
control networks. On a molecular level, increased thal-
amic gamma-aminobutyric acid (GABA) levels were ob-
served using magnetic resonance spectroscopy (MRS) in
experienced yoga subjects immediately after a yoga prac-
tice [11]. In line with the latter, a leading hypothesis of
the underlying neurobiological mechanism of yoga is
that breathing exercises and baroreflex-promoting poses
induce a shift in the parasympathetic nervous system
and brain GABA levels through the vagal nerve [12, 13].
Based on this, we hypothesized that if yoga would region-
ally reduce neuronal activity through GABAergic inhibition,
it should be measurable using [‘*F]fluorodeoxyglucose
(FDG) PET, since glucose is considered the major source of
energy in the brain and reflects predominantly glutamater-
gic neuronal-astrocyte activity [14]. To reduce heterogen-
eity in the current study, we focused on the effects of a
widely practiced yoga style, ashtanga, that consists of a
standard sequence of fixed poses, specific breathing, and
meditative activity, implying low inter-subject variability in
intervention performance, and compared that to a well-
defined control group. Using simultaneous PET/MR
imaging, we therefore conducted a 2 x 2 cross-sectional im-
aging study to assess FDG PET changes as primary object-
ive. As secondary objective, alterations in structure,
connectivity, and GABA-activity were explored using
voxel-based morphometry (VBM), rsfMRI, DTI, and MRS.

Materials and methods

Participants

Twenty-five right-handed healthy volunteers between 24
and 52 years, participated in the study: a yoga group
consisting of ten experienced yoga practitioners (age,
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36.8 + 7.0 years; 8 female/2 male) and a control group of
15 healthy controls (age, 34.6 + 9.7 years; 13 female/2
male). Groups were matched for age, gender, education,
and physical activity level. Experienced yoga practi-
tioners had to practice ashtanga yoga since at least two
years, three or more times a week. Otherwise, the same
inclusion and exclusion criteria were used as detailed in
Supplement 1 (Supplementary Materials and Methods).

The study was approved by the local university ethics
committee and was conducted in full accordance with
the latest version of the Declaration of Helsinki. All par-
ticipants were recruited via response to advertisements
on the local homepage of the hospital and social media.
All participants provided written informed consent.

Study design

In this cross-sectional study, a PET/MR scan at rest and
post-intervention was performed on two consecutive
days, with randomized order, as depicted in Fig. 1. All
subjects fasted for three hours and were asked to abstain
from yoga or stringent physical exercise twelve hours
prior to FDG injection. The intervention for the yoga
group included practicing the first series of ashtanga
yoga sequences including a series of physical postures,
breathing exercises, and meditation. The control group
performed standardized physical exercises as their
intervention.

Image acquisition and reconstruction

An MRS scan was performed first (due to incompatibil-
ity of field-of-view placement) with 15 x 20 x 20 mm?
(6.0cm®) and 15 x 15 x 15 mm® (3.4 cm®) voxels posi-
tioned over left and right thalamus, and pregenual anter-
ior cingulate cortex, respectively. GABA concentrations
were derived by using a point-resolved spectroscopy se-
quence (PRESS sequence) (repetition time/echo time,
1500/35 ms, 192 averages).

For PET, subjects received an intravenous bolus injec-
tion of [ISF]ﬂuorodeoxyglucose (FDG) (mean * SD, 117
+ 7 MBq) with a 20-min accumulation period in a quiet
and dimly lit environment, either at rest or immediately
after their intervention. The FDG emission scan was
subsequently performed for 30 min (starting 53 + 14 min
postinjection, not significantly different between both
groups and individual conditions).

Simultaneous to PET acquisition, the following MR se-
quences were acquired: 3D volumetric T1-weighted
BRAVO sequence (plane, sagittal; TE, 3.2 ms; TR, 8.5
ms; TI, 450 ms; flip angle, 12° receiver bandwidth, 31.25
kHz), zero-echo-time (ZTE) MR for attenuation correc-
tion (3D radial acquisition; flip angle, 0.8°; bandwidth,
62.5 kHz), diffusion tensor imaging (DTI) (TR, 12000
ms; TE, 85 ms; b0, 1500s/mm?; directions, 48; slices, 55),
and resting-state functional MR (rsfMRI), using T2*-
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Fig. 1 2 X 2 cross-sectional study design for both yoga and control groups, before and after intervention

weighted gradient-echo planar imaging (GE-EPI) (TR,
1700 ms; TE, 23 ms; flip angle, 90°; number of volumes,
320). During the resting-state functional MR data acqui-
sition, subjects were asked to close their eyes without
falling asleep.

At the end of the PET acquisition, a single venous
blood sample was collected to measure blood glucose
concentration and the remaining FDG activity, to calcu-
late absolute glucose consumption (Hunter method)
[15].

PET data were rebinned in six frames of 5 min, and
corrected for deadtime, randoms, scatter, and attenu-
ation. An MR-based attenuation correction using the
ZTE sequence was used [16]. PET images were recon-
structed using OSEM (ordered subsets expectation
maximization: 28 subsets, 4 iterations) algorithm, includ-
ing time-of-flight information, resolution modeling, iso-
tropic Gaussian post-smoothing with a FWHM (full
width half maximum) of 4.5mm, and corrected for
time-of-flight offsets [17].

PET processing

PET data were analyzed using SPM12 (Statistical Para-
metric Mapping, Wellcome Department of Imaging
Neuroscience, London, UK) and for a volume-of-interest
(VOI)-based analysis using PMOD software (v3.9,
PMOD Inc, Zurich, Switzerland). PET data were cor-
rected for motion and averaged to obtain a static FDG
image. After realignment to the scan at rest and coregis-
tration to T1-weighted MR image, spatial normalization
(I x 1 x 1 mm voxel size) to the Montreal Neurological
Institute (MNI) space was done in SPM12. Before ana-
lysis, PET images were additionally smoothed using a
Gaussian FWHM of 10 mm. Parametric images for re-
gional cerebral metabolic rate of glucose (rCMRGlu)
(mmol/l/min) were calculated based on a simplified kin-
etic model using blood glucose concentration and
remaining FDG activity of a single venous sample

(Hunter method). One yoga subject was excluded from
this analysis due to a technical issue. For absolute or
relative (normalization on whole brain counts), a relative
gray matter analysis threshold of 80% of the mean was
adopted to exclude extracerebral activity. Voxel-based
findings were corroborated with a predefined VOI ana-
lysis using the N30R83 Hammers probabilistic atlas and
AAL-merged atlas in PMOD [18, 19]. The AAL atlas al-
lows for a more detailed delineation of the entire brain-
stem, encompassing VOIs for the midbrain, pons, and
medulla, respectively.

Associations between FDG uptake and self-reported
years of regular ashtanga yoga experience were also at
the voxel and VOI level assessed.

MR processing

For the voxel-based morphometry (VBM) analysis, the
Computational Anatomy Toolbox (CAT12) [20], imple-
mented in SPM12, was used. After segmentation, spatial
normalization (DARTEL algorithm) and modulation,
GM images were smoothed with a Gaussian kernel of 8
mm. Statistical unpaired ¢ tests were conducted, with
total intracranial volume (TIV) as confound, and an ab-
solute threshold masking of 0.1 to avoid edge effects
around borders between GM and WM.

Diffusion tensor images (DTI) were distortion corrected
(FMRIB Software Library (FSL); University of Oxford,
UK); Gibbs-rings, eddy-current, and motion artifacts were
corrected using ExploreDTI [21]. Differences between the
extracted fractional anisotropy (FA) and mean diffusivity
(MD) values between both groups were assessed with a
voxel-based analysis and atlas-based VOI analysis.

Resting state fMRI data were pre-processed and ana-
lyzed using the Conn toolbox v17 [22]. Due to the ex-
plorative nature of this study, multiple regions-of-
interest (ROIs), including atlas regions and resting-state
network nodes (default mode, salience, somatosensory,
visual, dorsal attention, and language network) were
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included to perform a ROI-to-ROI seed-based analysis.
rsfMRI data were explored at p < 0.05 (FDR analysis-
level corrected). Additionally, an independent compo-
nent analysis (ICA) was performed on the resting-state
fMRI data to perform an ICA-to-voxel analysis to ad-
dress differences between groups and conditions.

Proton-magnetic resonance spectroscopy data were
processed and analyzed using JMRUI [23]. The QUEST
algorithm was used for metabolite quantification with
simulated short echo spectra (TE = 35ms) of metabo-
lites as prior knowledge, combined with a “Subtract” ap-
proach for background modeling.

Statistical analysis

Data values are presented as mean + SD and evaluated at
the p < 0.05 level. Conventional statistical analyses were
conducted in SPSS (v25, IBM, Corporation, Chicago, Illi-
nois) or Prism (v5, GraphPad, San Diego, USA). Except for
the voxel-based image analyses in the SPM/Conn toolbox,
all numerical data sets were tested for normalized distribu-
tions and subsequent parametric or non-parametric analyt-
ical tests were chosen accordingly. Unless stated otherwise,
voxel-based data were processed with the following thresh-
olds: Ppeighe = 0.001 (uncorrected), cluster extent of > 160
mm?, and FWE cluster corrected.

For the yoga subjects, the correlations between
volume-of-interest-based glucose metabolism results and
self-reported years of regular ashtanga practice were an-
alyzed with a Spearman’s rank test.

Results

Demographics

In total, 10 experienced yoga subjects and 15 healthy
controls were included in the study (Table 1). Groups
did not significantly differ in age, gender, education,
weekly physical activity level, or glycemia levels. The
control group had a significantly higher BMI (24.8 + 3.6)
compared to the yoga group (21.2 * 1.6).

Table 1 Subject demographics and activity levels

Yoga subjects  Control subjects  p value

Gender (F/M) 8/2 13/2 0.66
Age (years) 368+ 70 346+ 97 0.55
Education (years) 156 + 2.1 157 +14 0.85
Activity level (h/week) 55+ 1.1 49 +32 0.58
Regular yoga practice (years) 4.8 + 2.3 - -
Glycemia (mmol/L) 49+ 03 48 + 04 093
BMI (kg/m?) 212416 248+ 36 0.003"

Data is expressed as mean + standard deviation, BMI body-mass index, F
female, M male. “indicates significant difference
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PET findings at rest

No differences in absolute glucose metabolism (rCMRGlu)
were found between the groups at rest. SPM group analysis
of the relative FDG PET data showed a highly significant
decrease in glucose metabolism at rest for the yoga practi-
tioner group compared to controls in the hippocampus,
parahippocampus, amygdala, insula, anterior midbrain, stri-
atum (globus pallidus), and cerebellum (vermis, upper cere-
bellum), with a peak effect in the left parahippocampus of -
84% (Ppwe < 0.0001) (Fig. 2a and Supplementary Table
S1). The VOI-based analysis confirmed this significant rela-
tive decreased glucose metabolism especially in the left
parahippocampus (- 5.7%, p = 0.007) and in the midbrain
(- 6.0%, p = 0.024) in the yoga group (Fig. 2b) (no Bonfer-
roni correction applied). Averaged relative transverse FDG
images for each group are given in Supplementary Figure
S1.

Correlation analysis in the yoga group showed that de-
creased glucose metabolism in the parahippocampus (p
= - 0.628, p = 0.05) and full brainstem VOI (p = -
0.640, p = 0.046) was inversely related to the years of
regular ashtanga yoga practice (Fig. 2c).

Post-intervention PET findings

No differences in absolute glucose metabolism
(rCMRGIu) were found between the rest condition and
after yoga. However, a regional relative increase in glu-
cose metabolism in the cerebellum (peak effect 4.7%,
Prywr < 0.0001) was observed after a single yoga practice
compared to the rest condition in the yoga group (Fig.
2d and Supplementary Table S2). This was confirmed in
the VOI-based analysis for the whole cerebellum VOI
(3.2%, p = 0.010) (Fig. 2e). In contrast, a single cycling/
stretching intervention in controls did not result in de-
tectable glucose metabolism changes. Averaged relative
transverse FDG images for both groups after interven-
tion are also supplied in Supplementary Figure S1.

MR results

We did not observe significant differences in gray
matter volume as measured with VBM. Both at rest
and after intervention, no group differences or inter-
vention interaction was found for the main rsfMRI
networks (default mode, salience, somatosensory, vis-
ual, dorsal attention, and language network), nor for
the ROI-to-ROI analyses. For MRS, GABA levels at
baseline nor after intervention were different between
groups (all p > 0.1). As for DTI, also no differences
in regional WM FA and MD were found between the
yoga and control group at baseline.

Discussion
The primary objective of this study was to cross-
sectionally determine differences in brain glucose
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metabolism between yoga practitioners and control sub-
jects, at rest and after intervention. The main limbic re-
gions where resting glucose metabolism was reduced in
experienced yoga subjects included hippocampus, para-
hippocampus, and amygdala, encompassing key areas in

mood and affect regulation [24, 25]. As for the amygdala,
smaller right amygdala volumes have been found in yoga
and meditation practitioners that were significantly cor-
related with years of practice [26]. Furthermore, in
mindfulness meditation, the default mode network
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(DMN) is less active in experienced meditators [27]. The
DMN encompasses the medial temporal subsystem in-
cluding the hippocampus [27, 28]. Also, improved regu-
lation of somatic and negative emotional arousal has
been found, coupled to decreased glucose metabolism in
the parahippocampus and insula [29, 30].

Decreased metabolism was also found in the left insula
in the yoga group. The insula plays a pivotal role in
interoception, body awareness, and viscero-emotional
processing. It is involved during meditation, but also
upon postural changes and slow paced breathing [12], its
activity is associated to increased pain tolerance in yoga
practitioners [31] and it has been linked to stronger
functional connectivity with the frontal cortex upon
meditation [8].

Symmetrical clusters of reduced metabolism were also
observed in the upper cerebellum and vermis, as well as
in the striatum. These motor function areas are involved
in controlled movement, balance, and proprioception
that are interrogated during various asthanga postures.
On the other hand, controlled slow rate paced breathing
has also been related to cerebellar and striatal changes
related to cardiorespiratory control [12].

Changes in the brainstem in our study were predomin-
antly located in the anterior to central midbrain area. The
spatial resolution of the applied state-of-the-art time-of-
flight PET with resolution recovery, is about 4 mm [32],
which does not allow further detailed subregion differenti-
ation of the altered metabolism in this complex nuclei-
rich basal brain area. In the anterior/central midbrain,
dopaminergic projection neurons from the ventral teg-
mental area are located. Increased dopamine tone with de-
creased desire for action has been observed during yoga
nidra meditation [33]. Also, the median raphe with gluta-
matergic efferents is located in this cluster. Further high-
resolution or specific neurotransmitter-based PET or de-
tailed MR spectroscopy may further pinpoint the causative
origin of this area.

Overall, the interpretation of lower baseline metabol-
ism may be threefold. First, in line with the GABAergic
stimulation hypothesis of yoga [11, 12], GABA-mediated
cortical inhibition, and the breathing and baroreceptor
response of yoga practice, may lead to increased cortical
and subcortical inhibition, resulting in lower baseline
neuronal activity [34]. Although FDG uptake is mainly
driven by glutamatergic synapses and GABAergic and
other neurotransmitters present a minor contribution, a
slight decrease in FDG uptake due to elevated GABAer-
gic cannot be ruled out. Secondly, in line with recent
studies on brain energetics and network communication
efficiency [35, 36], chronically a regionally more efficient
glucose metabolism may be present. Thirdly, a pre-
existing trait with reduced limbic resting activity may
have been present in experienced yoga subjects. Stress
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reduction and desire for improved emotional well-being
are the top outcomes of yoga in the vast majority of
practitioners [1], and pre-existing stress or anxiety traits/
disorders may in part be responsible for the current
findings. Although the reason for starting yoga was not
explicitly investigated in our population, psychometric
variables were not different (data not shown). Also, de-
creased neuronal activity in medial temporal areas are
also seen in neurodegenerative cognitive disorders al-
though with much higher intensity differences, the func-
tional neuroanatomy of the hippocampus and
parahippocampus is determined by multiple circuits
encompassing emotional memory and a richness of
neurotransmitter systems, so we do not assume any im-
plications on the cognitive level of the current findings.

Additional short-term metabolic effects include a rela-
tive increase in cerebellar glucose metabolism immedi-
ately after a single yoga session, in contrast to the
observed decrease at rest in yoga subjects. This might
reflect a prolonged effect of physical postures, breathing,
and meditational components on the cerebellum.

In controls, the acute cycling/stretching intervention
did not alter global or regional metabolism. Most previ-
ous studies on low to moderate intensity steady-state
cycling or running paradigms have not found differences
in global cerebral glucose metabolism or blood flow after
single or acute exercising, but when FDG uptake was
measured during the exercises global decreases were
found [37], related to exercise intensity, up to about -
30%. Other substrates such as lactate may maintain
neuronal activity in the acute setting [38, 39] and timing
is important as during constant physical exercise, an in-
crease in energy consumption is seen that returns to the
resting level as the exercise continues [40]. As for the
MRI measures, in neither rest nor activation setting, dif-
ferences were found and can therefore not corroborate
previous studies in specific yoga forms or meditation [8,
30]. Aside from the small sample and associated chance
of type II errors, this negative result may also partly be
explained by the relatively low sensitivity of the applied
8-channel coil.

Although most subjects in the yoga group indicated
that the yoga session was similar to their general practice,
the experimental setting may have disrupted the typical
relaxed environment where yoga is practiced. The differ-
ence in BMI (Table 1) did not influence the observed
EDG PET findings (data not shown). Finally, because of
the wide variation in yoga styles ranging from low to high
intensity styles, these results therefore not necessarily
allow extrapolation to other yoga styles with varying rela-
tive contributions of physical postures, meditation, or
breathing exercises [5]. Thus, larger group sizes and/or
other specific styles of yoga are thus to be studied similarly
to disentangle these various aspects in further detail.
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Conclusions

Brain glucose metabolism in medial temporal, insular, stri-
atal, and midbrain is reduced in experienced yoga practi-
tioners and regionally correlated with years of regular
yoga practice, suggesting an interaction between ashtanga
yoga practice and brain metabolism. Furthermore, cere-
bellar metabolism is increased after a single yoga practice
in the experienced yoga practitioners. In contrast, no dem-
onstrable alterations in MR-based measures were found in
this study.
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